Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm

Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm - Hallo friendsCAR ON REPIYU, In the article you read this time with the title Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm, We have prepared this article for you to read and retrieve information therein. Hopefully the contents of postings Article car review, Article mobile review, We write this you can understand. Alright, good read.

Title : Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm
link : Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm

Read too


Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm

OSA Oprics Express paper "Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure" by Zixi Jia, Qiang Wu, Xiaorong Jin, Song Huang, Jinze Li, Ming Yang, Hui Huang, Jianghong Yao, and Jingjun Xu from Nankai University, Tianjin Institute of Power Sources, and Kunming Institute of Physics, China proposes an improvement over the previous Black Si devices:

"Femtosecond laser hyperdoped silicon, also known as the black silicon (BS), has a large number of defects and damages, which results in unstable and undesirable optical and electronic properties in photonics platform and optoelectronic integrated circuits (OEICs). We propose a novel method that elevates the substrate temperature during the femtosecond laser irradiation and fabricates tellurium (Te) hyperdoped BS photodiodes with high responsivity and low dark current. At 700 K, uniform microstructures with single crystalline were formed in the hyperdoped layer. The velocity of cooling and resolidification is considered as an important role in the formation of a high-quality crystal after irradiation by the femtosecond laser. Because of the high crystallinity and the Te hyperdoping, a photodiode made from BS processed at 700 K has a maximum responsivity of 120.6 A/W at 1120 nm, which is far beyond the previously reported Te-doped silicon photodetectors. In particular, the responsivity of the BS photodiode at 1300 nm and 1550 nm is 43.9 mA/W and 56.8 mA/W with low noise, respectively, which is valuable for optical communication and interconnection. Our result proves that hyperdoping at a high substrate temperature has great potential for femtosecond-laser-induced semiconductor modification, especially for the fabrication of photodetectors in the silicon-based photonic integration circuits."



Thus Article Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm

That's an article Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm This time, hopefully can give benefits to all of you. well, see you in posting other articles.

You are now reading the article Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm with the link address https://caronrepiyu.blogspot.com/2020/02/tellurium-doped-black-silicon-pd-shows.html

Subscribe to receive free email updates:

0 Response to "Tellurium-doped Black Silicon PD Shows 1e-3 A/cm2 Dark Current and Extended Sensitivity up to 1600nm"

Post a Comment